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ELASTIC CONTACT OF SMOOTH COMPLEX-SHAPED BODIES
A. A. Korolev

(Received 17 December 2001)

The contact problem for smooth elastic bodies with a single-point initial contact (the Hertz problem)
was considered in numerous publications [1-6]. One of the basic assumptions under which this problem can
be solved is that near the point of the initial contact, the contact surfaces are represented, as a rule, in terms
of a homogeneous second degree polynomial, and therefore, the initial gap function is also described by a
second degree polynomial. However, this restriction is justified only if the dimensions of the contact region
are small relative to those of the contacting bodies. In practice, there are many contact problems in which the
contact region is sufficiently large or the contacting bodies have a complex geometrical structure described
by nonhomogeneous equations of arbitrary degree. Such problems cannot be treated in the framework of
the Hertz problem. Of special interest is the contact of bodies with different shapes of the initial gap on the
principal cross sections, with the equations of different degrees describing these shapes. In what follows, this
case will be referred to as contact of bodies of complex geometrical structure.

Consider contact of two complex-shaped elastic bodies subjected to normal load P. Assume that there are no
tangential stresses and that in the absence of normal loads, the bodies have an initial single-point contact. Let us take
this point as origin O of a Cartesian coordinate system (see Figure). The axes X and Y lie in the common tangent
plane, and the axis Z passes through the point O, is orthogonal the plane XOY, and is directed inside one of the
contacting bodies. Suppose that the principal cross-sections of the contacting bodies belong to the same planes (for
definiteness, the planes X =0 and Y = 0).

Consider two points Mi(z,0, z1) and Ma(z, 0, z) of the first and the second bodies, respectively, on the plane
Y =0, and also points N{(0,y, z1), Na2(0,y, z2) of the two bodies on plane the X = 0. Suppose that the initial
distances | M| M;] and |N| N;| are related by

| M M| = 21 — 2, = Blz|™, |N\No| = 21 — 22 = Alyl”,

and that the contact region arising between the two bodies has an elliptic shape.

It should be observed that the overall shape of the contacting bodies is beyond the scope of the present paper and
is assumed such as to allow for the above hypotheses. Then, instead of the boundary conditions requiring information
about the shape of the bodies, we have the following equations:

w;i(s,0,0)+ wyz,0,0)= 6= (21 —22) =8 - Blz|™, w1(0,y,0)+wp(0,4,0)=8~(z1—2z2)=6-AbI", (1)

where w) (z,y, z) and w,(x, y, z) are vertical displacements of the first and the second bodies, respectively; 4 is the
distance by which the bodies approach one another under the action of the normal load.

On the other hand, if we denote by q(z, y) the density of the single layer potential at the point (z,y), then the
vertical displacement at that point can be expressed by the formula

-2  1-43 ',y dz' dy’
w(z,9,0) = w1(2,9,0) + wa(w,9,0) = ( L ﬂE‘f) / /S \/(i(_;)z) . (yfy,)z :

where S is the elliptic contact region, z2/a® + y2/b? = 1; p; and p; are Poisson’s ratios; Ey and E; are the elastic
moduli of the first and the second body, respectively.
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52 A. A. Korolev

Keeping in mind the above remarks, we do not consider this integral equations in the general form and replace it
by two more simple conditions. Since |M; M| = Blz|™, [N\ N,| = Aly|™, equations (1) become

( L-pi , 1-4 ) // a@',y)da' dy' _ 5 Bla|™, ( 1-pt | 1-4 ) // @', y")da' dy' _ 5 Ayl
nE1 k) s (- _'1;’)2 + yz mE1 mEy S 2+ (y - y’)z
2

In what follows, it is assumed that the external load compressing the elastic bodies is non-instantaneous, but
attains its given value P by increasing from zero on a finite time interval. Then, we can consider the contact of the
elastic bodies under some intermediate normal load ). Denote by ag and b¢g the minor and the major semi-axes of
the elliptic contact region formed under the action of the load @, and let a = ap, b = bp. As the load increases by
an increment dQ), we assume that one of the contacting bodies is an elliptic punch and the other body is an elastic
half-space.

As we know, the stress arising in the region of contact under the action of a plane punch subjected to normal
load d@ is given by

d

dg(z,y) = L 3

2ragbgy 1~ r ¥

2 2
ag b
and the distance by which the bodies approach one another is
ddg = Z—OK(eQ)dQ, “
q

where e, is the eccentricity of the contact ellipse arising under the external load Q; K (eg) is an elliptic integral of the

first kind,
L-pf  1-43
=——+—=
Yo E, TE,

We denote by (zp, yp) the coordinates of a point of the contact ellipse corresponding to the load P and introduce
the polar coordinates

E=zp-lcosy, n=yp-lsiny,

where [ is the polar radius of the profile of the contact region and ¢ is the polar angle.
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Then, in view of (3), the vertical displacement at the point (z p, yp) caused by the load P in the contact region is

given by
w1 plale) dldod
W, yp, )—Vo/ / / pdQ , )
$o L

@ _1 2 _lsi 2
a1 (o) (e lsne
aQ Q

where the limits of the interior integrals correspond to the polar boundaries of the contact region formed under the
action of the intermediate normal load Q.
The limits of the interior integral, [;(¢) and l(y), are found from the equation

2 . 2
- zp-lcosyp _ yp—lsingp -0
ag bo ’

[bé,xp cos + aé)yp sing

whose roots have the form

1
! =
12(0) a, sin? @ + b} cos?

+ aQbQ\/a%) sin? g + b, cos? ¢ — (zp sinp — yp cos <p)2].

Then, direct integration yields

/lz(ép) dl 1
2 . 7 1_ .2 o ’
Li(p) 27meQ\/l_(xp—lcosgo) “(yp—lsmgo) 2bg l—erm2<p

aQ bo

Therefore, (5) takes the form

P /“Pl(xp,yp) dp dQ
2

bq

o@pye) f1 —eé sin?

1
w(IP,yP,O)z E'VO/
0

Now, we can write the boundary condition (2) as follows:
P (a,0)
1 dyd @
f R [ [
0o Y@ Jo e2Q sin? 2 ©0(a,0) 1- eé sin?
[ e,
0 bQ 0 1-— e sin? 7 2 0 bQ ©0(0,b) 1- 6%2 sin? [

where, in view of (4),

)

d
—1/0/ / el ™
1-ehsin2p

The limits of the interior integrals in (6) can be easily found. After simple transformations, expressions (6)

become
P w/2~pp
1
vy / 2 / _ dpdQ  _ Ab™,
o be

\/1-egsin2g
P 7|'/2 Pa d
w[ o [C e, / oo | == B ®)
0 %@ Jo/l1-e}siny 0\ /l-e}sinyp

e q = arctan b9 &)

by/1-b3b2 l-aba?

(pp = arctan
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Next, assume that the dimensions of the contact region are related to the current external load Q by
ag =uQ",  bg=kQ", (10)

in particular, a = uP", b= kP*. Let s = bg/b. Then

1]
3:<%), Q= ps\/t; dQ:P%s‘/t"ds. (11)

In view of (11), expressions (10) can be written as
as = uPhsh/t = qsh/t, bg = kP's = bs. (12)

In this case, the eccentricity of the contact ellipse corresponding to the load @ is defined by

\/l_as J1— b2 S2h/t- 1)_ (l_eZ)SZ(h/t-l)

where e is the eccentricity of the ellipse corresponding to the load P.
Taking into account the new notation, we can rewrite boundary conditions (8) in the form

Py / S1/t2 /"2 dpds _/“"‘ dpds - Ba™,
bt Jo o 1-¢e)sinfp Jo V1-eksin? o

Pl/() / 1t 2/”/2—‘917 dsods _ Abn'

\/l—eésinzap

(13)

Denote the integrals in (13) by

1
To(e) = / §n-! / __dpds
0 0o /1-e%sintp
S

1 Pa
Ju(e) = / g1 __dpds , (14)
0 0

V1-eLsin?g
1 T /2-pb dod
Jole) = / s / S
0 0 V1-ée%sinZe

Then, it follows from the second relation in (13) that

v 1/(n+1)
P ()

On the other hand, from (12) we see that b = kPt. Comparing the exponents of P in the last two relations, we find that
t=1/(n+1). From the first expression in (13), keeping in mind the new notation, we find that

o = pr/imeb) ( vo(Jofe) = Ja(@) A"V + 1) ) v
(vo(n + 1)Jp(e)]?/ ™

By (12), we have a = uwP", and therefore, comparing the last two expressions, we obtain for the exponents of P

_ n
T mn+1)’

Therefore, relations (9) take the form

15)

1/1_ 2 n/m
(o = arctan ( s ), (p = arctan y—es ).
V1-e2 V1 -s2n/m 1-s2
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The eccentricity of the contact ellipse corresponding to the intermediate load is equal to

es= /1 (1-e?)s2n/m (16)

This expression shows that the eccentricity of the contact ellipse is constant only if n = m. For n # m, the eccentricity
depends on the external load.
With reference to (15) and (16) for n = m, the integrals (14) can be simplified. Thus,

Jo(e) = / s __dpds K(e)— = —K(e).
0 0 n

V1~eZsin2yp

Let us simplify J,(e) by integrating by parts. Let

o) dy S 1
u(s) = _— a(s) = arctan ——————, dv =s"" ds.
0 1-e?sin? V1-stv/1-¢?
Then,
s ! 1
u'(s) = (arctan )
V1-s2V1-¢? | 2.2< s )
—e?sin? [ arctan ——————
V1-s2vV1-¢e?
3 1 Y= s
VI—sZ2V/1-€e2+e2s?’ Ton

Hence,

! $a dpds
J e :/ Sn—-l/ 4
a(e) \/l—ezsin2
a(s)

s"ds
V1-s2V/1-e?—e2s2

1- 62 sin ¢

Changing the variables, s = cos y, we get

™2 cos™ pdyp

o +/l1-eXsingp

In a similar way, we simplify the expression of the integral Jy(e). Thus, for n = m, expressions (14) are transformed to

1 1
Ja(e) = ;K(e) - E

1
Jole) = —K(e),

1 1 [™?  cos®pdyp
Je)= —K@e)-— | —= 2%
= KO it an
™2 sinted
Jy(e) = — S e
0 1-e?sin?¢p

The formulas expressing the dimensions of the contact region can be written as follows:

P a—— ( vo(Jole) = Ja(@) AV + 1) ) m
[vo(n + 1)Jy(e)] /B ’

1/(n+1)
b:P'/(n+l)( ”0(71;' D Ju(e )) ' )

Dividing the first relation in (18) by the second relation, we obtain

(18)

AT (Jo(e) — Ja(e)) 7
B J70 (¢)

% = P [yg(n + 1)) Foan
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On the other hand, we know that

%:vl—ez.

Equating the right-hand sides of the last two relations, we obtain the equation for the eccentricity,

VIZ3 = P o(n + 1)] 765 AL;":‘” (Jo(©) ~ Ja(e) ™

m+ll
{n
m me +1) (e)

(19)

Having found the eccentricity from equation (19), we use (18) to find the length of the major semi-axis of the contact
ellipse, b, and then we find the length of its minor semi-axis, a.

Obviously, relation (19) imposes a constraint on the coefficients A and B. Since the left-hand side of (19) can take
values from O to 1, we see that for given P, n, m, and vy, the coefficients A and B should be such that the right-hand
side of (19) would also range from O to 1.

In particular, in order to find A and B for which equation (19) has a solution with respect to e for n = m, we
rewrite this equation, taking into account (17), as follows:

-1
ey [ _sintedp | [T _costede | A 20)
0 1—eZsinZy V1-e?sin?p B

If0 < e < 1, then the left-hand side of the last expression ranges from 1 to 0. Therefore, the solution of equation (20)
exists if0< A/B < 1.
Let us compare the results obtained above with the Hertz formulas for n = m = 2. From the second relation of (18)

it follows that
3 31’0
=4/ P—- .
b 7A 2Jp(e)

From the last relation of (17), we obtain

w/2

1 sin? p dy 1 1
== —_——=—D(e) = — -E
Ji(e) 7/, otsniy 2 (e) 53 (K (e)- E(e)),

where K (e) and E(e) are the elliptic integrals of the first and the second kind, respectively. Therefore, the length of
major semi-axis of the contact region is
3 3y
=4/P—-D
b=/ P D)

which coincides with the Hertz formula.

Let us find the distance & by which the contacting elastic bodies approach one another under the normal load P.
Substituting (7) into (12), we obtain

(5:1/05_@/1 sl /"r/2 dy ds
b 0 0 \/1—(1—(1—62)32"/(""1)) sinZ

In particular, for n = m, we have

ds = V0£K(e),
nb

3p /1 e /1r/2 d(p
d=vo— | s —_—
b Jo o +/1-ersingp

which coincides with the Hertz formulas for n = 2 and with the I. Ya. Shtaerman formula for n = 4.
Let us find the distribution of contact stresses. It is known that the equilibrium condition in the case of contact

under consideration can be written as
P= // q(z,y)dS,
S

where S is the elliptic contact region, and g(z, y) is the stress arising at the point (z, y) in the contact region under the
action of the external load P.
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Denote by Py, the external load for which (z, y) becomes a boundary point of the contact region. Obviously, as
the load increases, (z, y) becomes an interior point of the contact region. Then, under the external load P, the stress
arising at the point (z, y) can be calculated by the integration of (3),

1 [ dQ
q(z,y) = 5
T Jp,, z? y2
aQby[1- —— -
ap bQ

Using (11) and (12), we can rewrite the last expression as

Pn+1) [! sm/ml g
9@y) = — = > >
ra 1o E gmm _ Y 2
a? b?
1 n-14
_ P;n +b1) / s _ S _. 22)
Ta S0 \/S2n/m_y_32n/m—2_z_
b? a?
where so = Py, /P is the positive real root of the following equation with respect to s:
2 72
82n/m _ Z_ZSZn/m—Z _ _a_z_ =0. (23)
Relations (22) and (23) yield the final solution of the problem formulated above.
In order to transform (22), we introduce the variables
z y
t=—, = —=.
a P b
Then (22) becomes
Pn+1) [! s"lds
t,p) = g(at, bp) = , 25
a(t.p) « P) 27ab s1t,p) \/s2n/m _p232n/m—2 —{2 (25)
where s(r, p) is a real root of the equation
sZn/m __pZSZn/m—Z _ t2 =0. (26)

Thereby, we have reduced the problem of finding contact stresses on the elliptic contact region to that of finding stresses
on a contact region in the form of a unit circle. Obviously, making the transformation inverse to that of (24), we obtain
the stresses at the point of the elliptic contact region.

In particular, from (2.5) it follows that the stress at the center of the contact region, p=0, ¢t = 0, is equal to

— _ P(n+l) l n-l-n/m _ P m(n+1)
Pt OO T L S mme ) 7

It is easy to see that for n = m = 2 we obtain an expression which coincides with the Hertz formula.
Passing from the stress function on the elliptic contact region to the stress function on the unit circle contact
region, we can rewrite the equilibrium condition (21) in the form

b pay/1-y2/b? 1 /192
// q(x,y)dS = 4/ / g(z,y)dx dy = 4ab/ / qit,p)dtdp = ab // q(t,p) =P, (28)
a Jo o Jo
S S

where S| is the unit circle.
For arbitrary n and m, the stresses can be easily found from (25) and (26) by numerical methods. However, in
some special cases, these expressions can be substantially simplified.
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Let m = n. Then (25) becomes

P(n +1) / sn! ds
" 2mab [ N

This integral can be expressed in terms of a hypergeometric function of the first kind. To that end, we change the
variables by letting

q(t.p)= (29)

tdt
=/st-p?-t?, s=v/22+pr+t?, ds = —————.
V22 +pr+t?

Then
Pm+1) [V

]

Q(t,p) (t+p*+ tz)("—zv2 dt

2mab 0
P(n+1) (n2)/2 1 n 3 1-p?-t2
= LD ST -2(p Rl 1-2 2 P
" 2mab "\2> "2 2 P2+ 12

2

where o F) ! 1 n 3 1-p' -t is a hypergeometric function of the first kind
er -, -, ——— ind.
22 272 p* +12 ypere

In particular, for n = 2, we have
1 3 1 -p?—t?
F P O s A Yy T 5 o = 19
2 ( 2 2 P2+ t?

Pn+1
Q1(t,P)=———; )\/l—pz—tz,
wab

and therefore,

or

3P 2 y?
k] = - 1 - T T A k)
9(.9) 2rab a? b?

which agrees with the corresponding Hertz formula.
Forn = 4, we have
1 1- 2 _ 42 1 1- 2 _ 42
gL oy 2 ety L iep ot
2 2 p*+t2 3 p2+t?
It follows that

5P 1 1-p*—¢2
tp)= ——/1-p2 -2 (PP +t) 1 + —————
atp)= o VI=p =t p +t)< T3 )
5P pr t? 5P 2
= V- -2 p*+tP+ o) = V1i-pr -2 (1-=(1-p* 12
b VP (p 3 3) 2aad vV TF s-r-1 ),

or

5P xz ¥ 2 2yl
= i/1- S O [
109 = 2 T (1 3 (1 PR ))

which coincides with the expression obtained by I. Ya. Shtaerman [4].
Changing the variable by v = /p? + ¢ /s, we can represent (29) in another form,

Pn+1) 2 (n—l)/Z/ v
t,p)y= ————(p°+t —_— 30
a(tp) = ———(p"+t) T (30)
This formula will be used for the verification of the equilibrium condition.
Let us introduce the polar coordinates p = 7 cos ¢, ¢t = 7 sin . Then, (30) can be written as
Pn+1) -1 /
= 31
L un\/l_—ﬁ b
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Table
n Ny(r)
1 2
2 1
3 Artanhv'1 —r2
v1~r
4 1+2r2
5 1+ 37'2+i Artanh V' 1
2 2 V1-r2
4
6 1+ —3—7‘2 -2—7“4
5, 15 r® 5
7 1+ZT +§—mArtanhv1—r
6 8 16
8 1+3—T2+?7‘4+TT6

Condition (28) takes the form

1
ab // q@(r)dS = ab/ l(Mq(rydr =P
s 0

where I(r) = 27@r is the length of a circle of radius r.
To prove the last relation, we substitute (31) into its left-hand side. We get

1 1 1 1
dv
ab/lr rdr:ab/ 2argr(r =Pn+l/r"/ —dr

Let us integrate by parts, using the notation

1 n+1
u = —dy— dv=r"dr du:—l——— v= r

r vV1-02 ’ rmyV1—r2 n+l’

We find that

1 1 1
dv
ab/ 2nrqy(rydr = P(n+ 1 / 7 / ——dr
A @ ) A i
7.n+1 1 dv 1

I n+l
T 1
=P 1 - - d
(n+ )<n+l r vV 1-p2 0 /O n+1( 7'”\/1—7'2) T)

n+l 1
—P(n+1)/ ( ! )dr:P/l=P.
V12 0 1-7r2

Therefore, the equilibrium condition holds for the stress functions (29), (30), or (31) for arbitrary n = m.

The stresses in the case of n = m were first calculated in [6] without the verification of the equilibrium condition.
In order to compare the formulas obtained for the stresses in the present paper with those of [6], we represent (31) as
follows:

ar =potn -1y [ —
po r vrV1-02

(- 1)
Nnlr) = Vier? /un Vi-v

Letting
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and substituting this into (31), we obtain the formula of [6

.’52 2
q(z,y) = poy/ 1 - ZZ Nn(r), r= ?+i—2

The expressions of N, (r) for various n presented in the table.

There are several more special cases in which (25), (26) can be simplified. Consider the cases m =2, n =4;
m=3,n=6;andm=4,n=8.

In all these cases, the lower integration limit in (25) coincides with a root of the equation st~ pls? =0. This

rOOtlS
2
1
81 = \/%‘ + 5\/p4+4t2.

Let m = 2, n = 4. Then (25) takes the form

SP ! s¥ds
27rab s1(t.p) 34 - p232 _—

Q](t, P) =

Calculating the last integral, we obtain

s*ds
q(t,p) = Smab —
Ta 2124271 /pi+at? \/s o

P 1 —pr+2y/1-p* -2
_ P N AT Bt | 22 P : (32)
2rab 4 P+ 42

Let us verify the equilibrium condition. We have

ab// qi(t,p)dsS = 4——// 2\/1— —~t2dtdp
S

sp 1 [V 2opr 21212 p
4__/ / »n p+2 p-t dtdp:s—ﬂ +£_7r_= ’
2r 4 Vp? +4t? 6 27w 15

and therefore, the equilibrium condition holds.
Let m = 3, n = 6. Then (25) becomes

1 5
s’ ds
q(t,p)=
2mab Jsap) /84 ~p?s?—
Hence,
P 1 2 4 2
qt,p) = 77;a—b—1—6-{(4+6p )V 1-p2—t2— (3p* +4t°) In\/p* + 48

+(3p* +48%) In (2-p? +2/1-p-2) }. 33)

The equilibrium condition holds, since
P 1 [ Vi
ab/ ql(t,p)dSl=4%———/ / (4 +6p*)\/1-t2—pldtdp
5
7P 1 4 5
-4 3p +4t%) In+/p? + 42 dt dp

27r 16

7P
+ Ei// 3p +4¢* 1n(2 pP+2y/1-p? t2)dtdp 47%=

27 16
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Forn = 8, m = 4, we have
9P ! s’ ds
2mwab

q(t,p)= ,
sitp) /8 —p?s? -2

and therefore,

9P 1
=" 1A /1=p2 —12(8 + 102 4+ 1682
q (¢, p) Smab 192 {4 1-p t(8 Op“+ 15p™ + 16 )

-3(5p° +1298) (In (p* + 46%) =21 (2~ 7% + 2/ T2 -#))}. (34)

Simple calculations show that this expression also satisfies the equilibrium condition.

It should be noted that in most cases, such expressions for the stress function may be very cumbersome. At the
same time, for arbitrary parameters n and m of the gap function, formulas (25) and (26) yield very good results for
the stresses in the contact region, if one resorts to numerical methods, for instance, those provided by Mathematica 4
software.

Thus, together with formulas (25), (26) for the calculation of contact stresses, we have obtained, as special cases,
Hertz, Shtaerman [4], and Korolev [6] formulas. For arbitrary n and m, we have found the stresses at the center of the
contact region, and obtained formulas (32), (33), and (34) for the calculation of contact stresses for 7 = 4 and m = 2,
n=6andm=3,n=8andm =4.

The solution of this contact problem is of great practical importance. Thus, when manufacturing ball bearings,
one can vary the gap between the balls and the races to ensure a more uniform distribution of contact stresses in the
contact region, thereby increasing the life-time of the device and its bearing capacity. On the other hand, decreasing
the dimensions of the contact region between the balls and the race, it is possible to increase the speed of the bearing.
This statement pertains to all other coupling devices such as serrated joints, spline connections or journal bearings.

Of special practical importance are the cases with the exponent of the initial gap function alon g one of the principal
axes being m = 2, and along the other principal axis, n > 2. For example, this is the case if all bodies and races in
the rolling plane have a spherical shape and the contact region is small. Then, in the direction of rolling, the exponent
of the gap function is always close to 2. However, in the transverse direction, the profile of the bodies may be taken
arbitrary, so as to ensure a favorable distribution of contact stresses and thus increase the efficiency of rolling-contact
bearings.

The results obtained in this paper indicate how to adjust the initial gap between contacting bodies in order to
obtain optimal stress diagrams in the contact region and increase the efficiency of a wide class of mechanical devices.

REFERENCES

[1] V. M. Alexandrov and B. L. Romalis, Contact Problems in Machine Design [in Russian], Mashinostroenie, 1986.

[2] V. M. Alexandrov and E. V. Kovalenko, Problems of Continuum Mechanics with Mixed Boundary Conditions [in
Russian], Nauka, Moscow, 1986.

[3] V. M. Alexandrov and D. A. Pozharskii, Nonclassical Spatial Problems in the Mechanics of Contact Interaction
between Elastic Bodies [in Russian], Faktorial, Moscow, 1998.

[4] L Ya. Shtaerman, Contact Problems of Elasticity [in Russian], Gostekhizdat, Moscow, Leningrad, 1949.

[5] A. L Lur’e, Spatial Problems of Elasticity [in Russian], Gostekhizdat, Moscow, 1953.

[6] A. V. Korolev, Choosing the Optimal Shape of Contact Surfaces of Machine Elements [in Russian], Izd-vo
Saratovsk. Un-ta, Saratov, 1972.

Saratov



	Обложка журнала MECHANICS OF SOLID № 3 Vol.37,2002 Allerton Press,Inc
	Титул журнала Mechanics of solid
	Содержание - Contents
	Korolev A.A.Elastic contact of smooth complex-shaped bodies
	References

